skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fraterrigo, Jennifer"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Increasing fine root carbon (FRC) inputs into soils has been proposed as a solution to increasing soil organic carbon (SOC). However, FRC inputs can also enhance SOC loss through priming. Here, we tested the broad-scale relationships between SOC and FRC at 43 sites across the US National Ecological Observatory Network. We found that SOC and FRC stocks were positively related with an across-ecosystem slope of 7 ± 3 kg SOC m−2per kg FRC m−2, but this relationship was driven by grasslands. Grasslands had double the across-ecosystem slope while forest FRC and SOC were unrelated. Furthermore, deep grassland soils primarily showed net SOC accrual relative to FRC input. Conversely, forests had high variability in whether FRC inputs were related to net SOC priming or accrual. We conclude that while FRC increases could lead to increased SOC in grasslands, especially at depth, the FRC-SOC relationship remains difficult to characterize in forests. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. Henn, J (Ed.)
    Abstract Intraspecific trait variation can influence plant performance in different environments and may thereby determine the ability of individual plants to respond to climate change. However, our understanding of its patterns and environmental drivers across different spatial scales is incomplete, especially in understudied regions like the Arctic.To fill this knowledge gap, we examined above‐ground and below‐ground traits from three shrub taxa expanding across the tundra biome and evaluated their relationships with multiple microenvironmental and macroclimatic factors. The traits reflected plant size and structure (plant height, leaf area and root to shoot ratio), leaf economics (specific leaf area, nitrogen content), and root economics and collaboration with mycorrhizal fungi (specific root length, root tissue density, nitrogen content, and ectomycorrhizal colonisation intensity). We also measured leaf and root δ15N and leaf δ13C to characterise nitrogen source and acquisition pathways and plant water stress. Traits were measured in replicated plots (N = 135) varying in soil microclimate, thaw depth and organic layer thickness established across five sites spanning a macroclimate gradient in northern Alaska. This hierarchical design allowed us to disentangle the independent and combined effects of fine‐scale and broad‐scale factors on intraspecific trait variation.We found substantial intraspecific variation at fine spatial scales for most traits and less variation along the macroclimate gradient and between shrub taxa. Consistent with these patterns, microenvironmental factors, mainly soil moisture and thaw depth, interacted with macroclimate, mainly climatic water deficit, to structure size‐structural and leaf trait variation. In contrast, most root traits responded additively to thaw depth and macroclimate.Synthesis. Our results demonstrate that above‐ground and below‐ground tundra shrub traits respond differently to microenvironmental and macroclimatic variation. These differing responses contribute to substantial trait variation at fine spatial scales and may decouple above‐ground and below‐ground trait responses to climate change. 
    more » « less
  3. Abstract Tall deciduous shrubs are critically important to carbon and nutrient cycling in high-latitude ecosystems. As Arctic regions warm, shrubs expand heterogeneously across their ranges, including within unburned terrain experiencing isometric gradients of warming. To constrain the effects of widespread shrub expansion in terrestrial and Earth System Models, improved knowledge of local-to-regional scale patterns, rates, and controls on decadal shrub expansion is required. Using fine-scale remote sensing, we modeled the drivers of patch-scale tall-shrub expansion over 68 years across the central Seward Peninsula of Alaska. Models show the heterogeneous patterns of tall-shrub expansion are not only predictable but have an upper limit defined by permafrost, climate, and edaphic gradients, two-thirds of which have yet to be colonized. These observations suggest that increased nitrogen inputs from nitrogen-fixing alders contributed to a positive feedback that advanced overall tall-shrub expansion. These findings will be useful for constraining and projecting vegetation-climate feedbacks in the Arctic. 
    more » « less
  4. As the Arctic region moves into uncharted territory under a warming climate, it is important to refine the terrestrial biosphere models (TBMs) that help us understand and predict change. One fundamental uncertainty in TBMs relates to model parameters, configuration variables internal to the model whose value can be estimated from data. We incorporate a version of the Terrestrial Ecosystem Model (TEM) developed for arctic ecosystems into the Predictive Ecosystem Analyzer (PEcAn) framework. PEcAn treats model parameters as probability distributions, estimates parameters based on a synthesis of available field data, and then quantifies both model sensitivity and uncertainty to a given parameter or suite of parameters. We examined how variation in 21 parameters in the equation for gross primary production influenced model sensitivity and uncertainty in terms of two carbon fluxes (net primary productivity and heterotrophic respiration) and two carbon (C) pools (vegetation C and soil C). We set up different parameterizations of TEM across a range of tundra types (tussock tundra, heath tundra, wet sedge tundra, and shrub tundra) in northern Alaska, along a latitudinal transect extending from the coastal plain near Utqiaġvik to the southern foothills of the Brooks Range, to the Seward Peninsula. TEM was most sensitive to parameters related to the temperature regulation of photosynthesis. Model uncertainty was mostly due to parameters related to leaf area, temperature regulation of photosynthesis, and the stomatal responses to ambient light conditions. Our analysis also showed that sensitivity and uncertainty to a given parameter varied spatially. At some sites, model sensitivity and uncertainty tended to be connected to a wider range of parameters, underlining the importance of assessing tundra community processes across environmental gradients or geographic locations. Generally, across sites, the flux of net primary productivity (NPP) and pool of vegetation C had about equal uncertainty, while heterotrophic respiration had higher uncertainty than the pool of soil C. Our study illustrates the complexity inherent in evaluating parameter uncertainty across highly heterogeneous arctic tundra plant communities. It also provides a framework for iteratively testing how newly collected field data related to key parameters may result in more effective forecasting of Arctic change. 
    more » « less
  5. null (Ed.)
    Deciduous shrubs are expanding across the graminoid-dominated nutrient-poor arctic tundra. Absorptive root traits of shrubs are key determinants of nutrient acquisition strategy from tundra soils, but the variations of shrub root traits within and among common shrub genera across the arctic climatic gradient are not well resolved. Consequently, the impacts of arctic shrub expansion on belowground nutrient cycling remain largely unclear. Here, we collected roots from 170 plots of three commonly distributed shrub genera ( Alnus , Betula , and Salix ) and a widespread sedge ( Eriophorum vaginatum ) along a climatic gradient in northern Alaska. Absorptive root traits that are relevant to the strategy of plant nutrient acquisition were determined. The influence of aboveground dominant vegetation cover on the standing root biomass, root productivity, vertical rooting profile, as well as the soil nitrogen (N) pool in the active soil layer was examined. We found consistent root trait variation among arctic plant genera along the sampling transect. Alnus and Betula had relatively thicker and less branched, but more frequently ectomycorrhizal colonized absorptive roots than Salix , suggesting complementarity between root efficiency and ectomycorrhizal dependence among the co-existing shrubs. Shrub-dominated plots tended to have more productive absorptive roots than sedge-dominated plots. At the northern sites, deep absorptive roots (>20 cm depth) were more frequent in birch-dominated plots. We also found shrub roots extensively proliferated into the adjacent sedge-dominated plots. The soil N pool in the active layer generally decreased from south to north but did not vary among plots dominated by different shrub or sedge genera. Our results reveal diverse nutrient acquisition strategies and belowground impacts among different arctic shrubs, suggesting that further identifying the specific shrub genera in the tundra landscape will ultimately provide better predictions of belowground dynamics across the changing arctic. 
    more » « less
  6. Martinez-Garcia, Ricardo (Ed.)
  7. Abstract Understanding the drivers of trait selection is critical for resolving community assembly processes. Here, we test the importance of environmental filtering and trait covariance for structuring the functional traits of understory herbaceous communities distributed along a natural environmental resource gradient that varied in soil moisture, temperature, and nitrogen availability, produced by different topographic positions in the southern Appalachian Mountains.To uncover potential differences in community‐level trait responses to the resource gradient, we quantified the averages and variances of both abundance‐weighted and unweighted values for six functional traits (vegetative height, leaf area, specific leaf area, leaf dry matter content, leaf nitrogen, and leaf δ13C) using 15 individuals of each of the 108 species of understory herbs found at two sites in the southern Appalachians of western North Carolina, USA.Environmental variables were better predictors of weighted than unweighted community‐level average trait values for all but height and leaf N, indicating strong environmental filtering of plant abundance. Community‐level variance patterns also showed increased convergence of abundance‐weighted traits as resource limitation became more severe.Functional trait covariance patterns based on weighted averages were uniform across the gradient, whereas coordination based on unweighted averages was inconsistent and varied with environmental context. In line with these results, structural equation modeling revealed that unweighted community‐average traits responded directly to local environmental variation, whereas weighted community‐average traits responded indirectly to local environmental variation through trait coordination.Our finding that trait coordination is more important for explaining the distribution of weighted than unweighted average trait values along the gradient indicates that environmental filtering acts on multiple traits simultaneously, with abundant species possessing more favorable combinations of traits for maximizing fitness in a given environment. 
    more » « less
  8. null (Ed.)
    Abstract. Data collected from research networks presentopportunities to test theories and develop models about factors responsiblefor the long-term persistence and vulnerability of soil organic matter(SOM). Synthesizing datasets collected by different research networkspresents opportunities to expand the ecological gradients and scientificbreadth of information available for inquiry. Synthesizing these data ischallenging, especially considering the legacy of soil data that havealready been collected and an expansion of new network science initiatives.To facilitate this effort, here we present the SOils DAta Harmonizationdatabase (SoDaH; https://lter.github.io/som-website, last access: 22 December 2020), a flexible database designed to harmonize diverse SOM datasets frommultiple research networks. SoDaH is built on several network scienceefforts in the United States, but the tools built for SoDaH aim to providean open-access resource to facilitate synthesis of soil carbon data.Moreover, SoDaH allows for individual locations to contribute results fromexperimental manipulations, repeated measurements from long-term studies,and local- to regional-scale gradients across ecosystems or landscapes.Finally, we also provide data visualization and analysis tools that can beused to query and analyze the aggregated database. The SoDaH v1.0 dataset isarchived and availableat https://doi.org/10.6073/pasta/9733f6b6d2ffd12bf126dc36a763e0b4 (Wieder et al., 2020). 
    more » « less